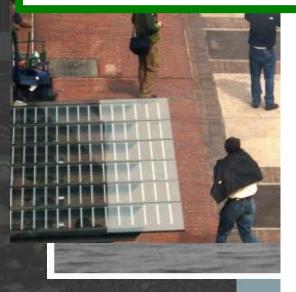
Models for Economic Impact Analysis of Disasters

Yasuhide Okuyama University of Kitakyushu, Japan

Volcanic Eruptions

Conditions

Climate Change

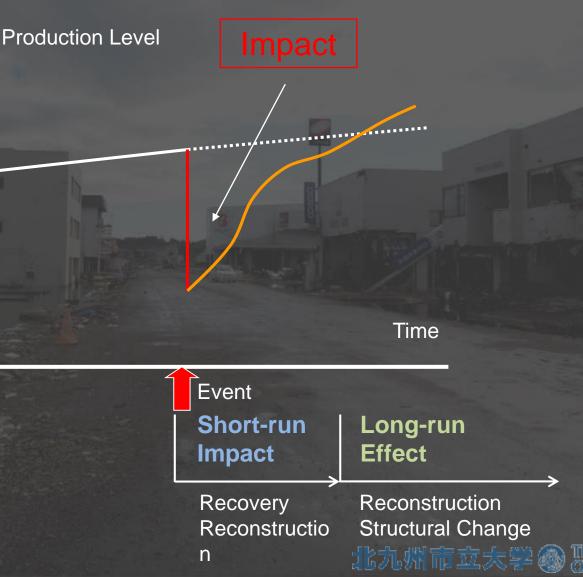

Pandemics

HAEMORRHAGIC FEVER

PNEUMONIA

MENINGITIS

ENCEPHALITIS



Terrorist Atta

RUBELLA WEST NILE VIRUS ZIKA MEASLES YERSINIA PESTIS MALARIA CHOLERA YELLOW FEVER LASSA FEVER

RIFT VALLEY FEVER

Economic Impacts of Disasters

Economic Impacts of Disasters <u>Destruction of Physical Properties</u>: Production facilities, buildings Infrastructure (roads, lifelines, etc.) Human capital (labor)

(Economic) Damages measured by assessing damaged property values

Economic Impact: Damages

This estimate was released three months after the event.

These estimates were2011 Eastreleased just two weeks after
the event.

Isunami (JPY trillion)

	East	Kobe Earthquake (1995)				
	Cabinet Office (Disaster Management Division)	Cabinet Office (Econo	Ministry of Land Development			
		Case 1	Case 1 Case 2			
		Equivalent damage rate to Kobe Earthquake				
Buildings, houses, equipment, etc.	10.4	11.0	30.0	6.3		
Lifeline facilities (utilities)	1.3	1.0	2.0	0.6		
Infrastructure facilities	2.2	2.0	3.0	2.2		
Others (agriculture, fisheries, forestry)	3.0	2.0	3.0	0.5		
Total	16.9	16.0	25.0	9.6		

Economic Impacts of Disasters

Disruption of Activities: Disruption of productions Transportation delays Lost wages Decreased demand (consumptions)

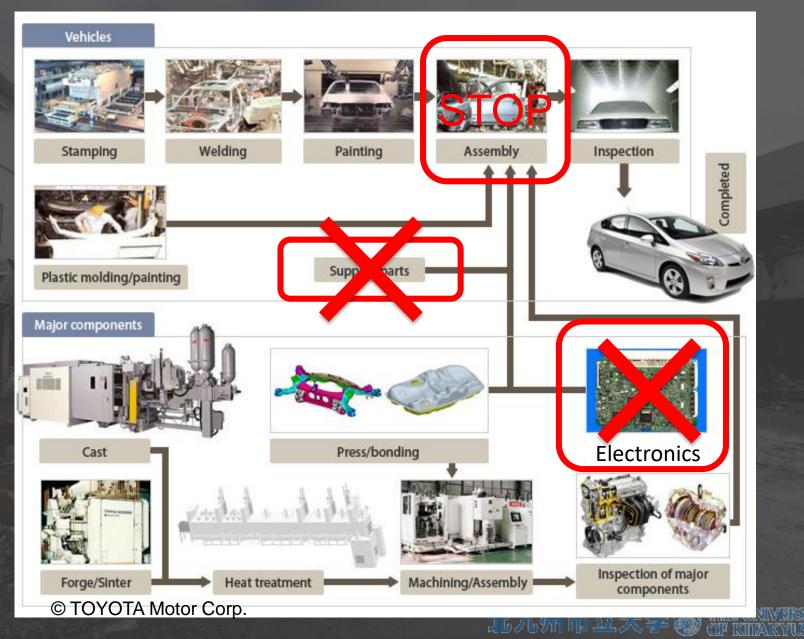
<u>(Economic) Losses</u>

estimated using economic models

Economic Impact: Losses

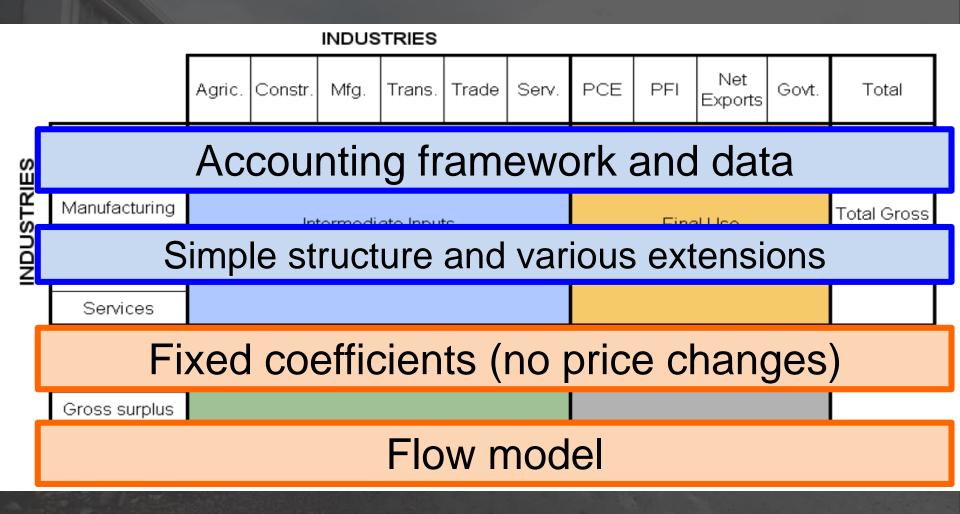
2011 East Japan Earthquake and (hypothetical) Tokyo Great Earthquake (JPY trillion)

		East Japan Great Earthquake (2011)	(hypothetical) Tokyo Great Earthquake			
		Cabinet Office	Cabinet Office			
		(Disaster Management Division)	(Disaster Management Division)			
Damages Buildings, houses, equipment, etc.		10.4	42.4			
	Lifeline facilities (utilities)	1.3	0.2			
Infrastructure facilities		2.2	4.7			
	Others (agriculture, fisheries, forestry)	3.0	0.0			
	Damage Total	16.9	47.3			
Losses	Higher-order Effects	not estimated	47.9			


Damages and Losses

Damages: value of damaged capital stock Losses: lost production opportunities (flows) These should not be added together. Losses are more useful and can be compared with macroeconomic indicators, such as GDP.

Losses: Propagation of Impact



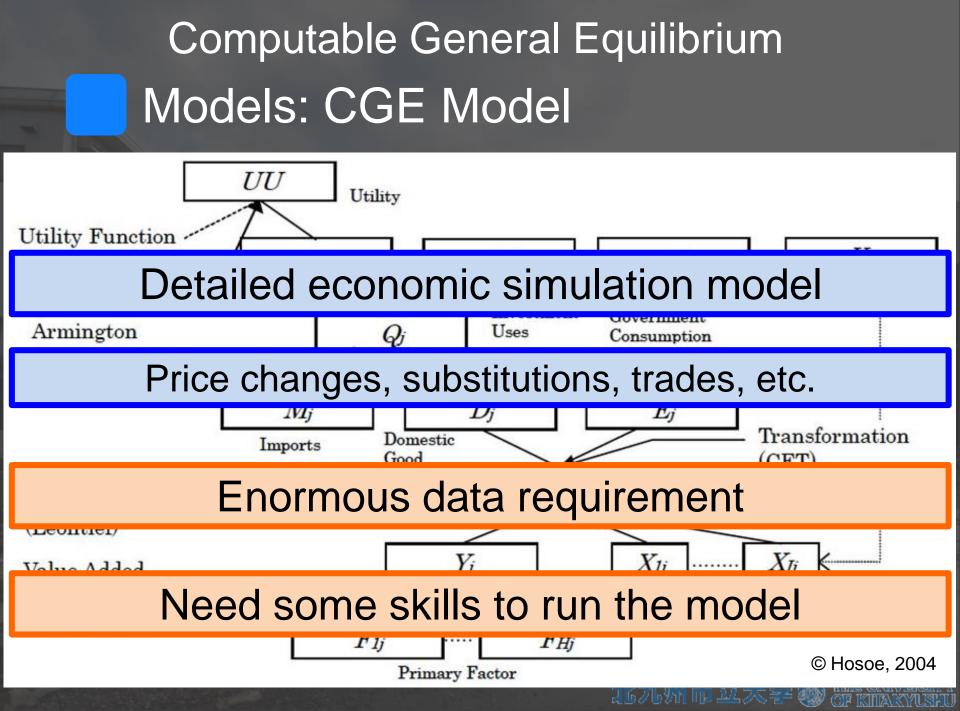
Impact through Supply Chains

Five Types of Losses Oosterhaven's (2017) classification: 1) Decrease of production (supply) 2) Forward effect of supply shortages 3) Substitution effect for replaceable goods 4) Decline of intermediate and final demands 5) Backward and positive effects from recovery and reconstruction

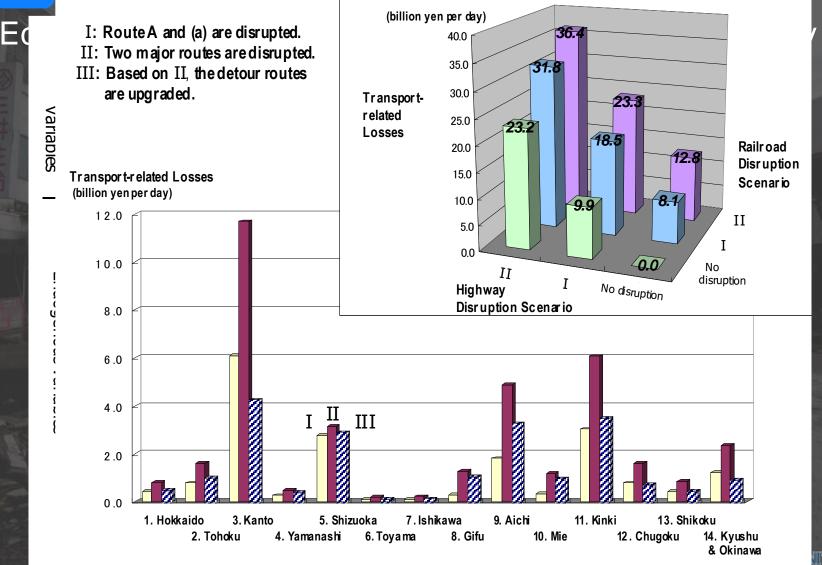
Models: Input-Output Model

Application of Input-Output Model

2004 Indian Ocean Earthquake and Tsunami (Okuyama, 2010)


Use of 2000 Asian International IO Table (IDE-JETRO)

mulcated in table 5.14 below.


Spatial distribution of total impacts of 2004 Indian Ocean earthquake and tsunami (in 2007 million US dollars)

	Sectors in model	Indonesia	Thailand	Malaysia	Philippines	Singapore	China	Taiwan	Korea	Japan	USA	Total
Output	Agriculture	672	228	2	1	0	19	2	3	8	13	948
impact	Mining	69	33	5	0	0	7	0	0	1	4	118
	Manufacturing	814	872	36	7	33	96	42	59	230	120	2,307
	Utilities	30	132	1	1	1	6	1	2	11	7	192
	Construction	20	3	0	0	0	1	1	0	4	2	30
	Trade &	370	401	5	2	7	14	9	7	64	47	926
	transport											
	Services	412	1,535	9	2	9	14	15	19	110	114	2,239
	Total	2,388	3,205	58	14	50	156	69	90	428	306	6,761
Income	impact	1,219	1,240	22	5	12	39	24	26	154	143	2,855

Source: ADPC

Application of CGE Model

Models: Econometric Model

 $KOBE_{t} = \beta_{0} + \beta_{1}JPN_{t} + \beta_{2}JPN_{t-1} + \beta_{3}KOBE_{t-1} + \varepsilon_{t}$

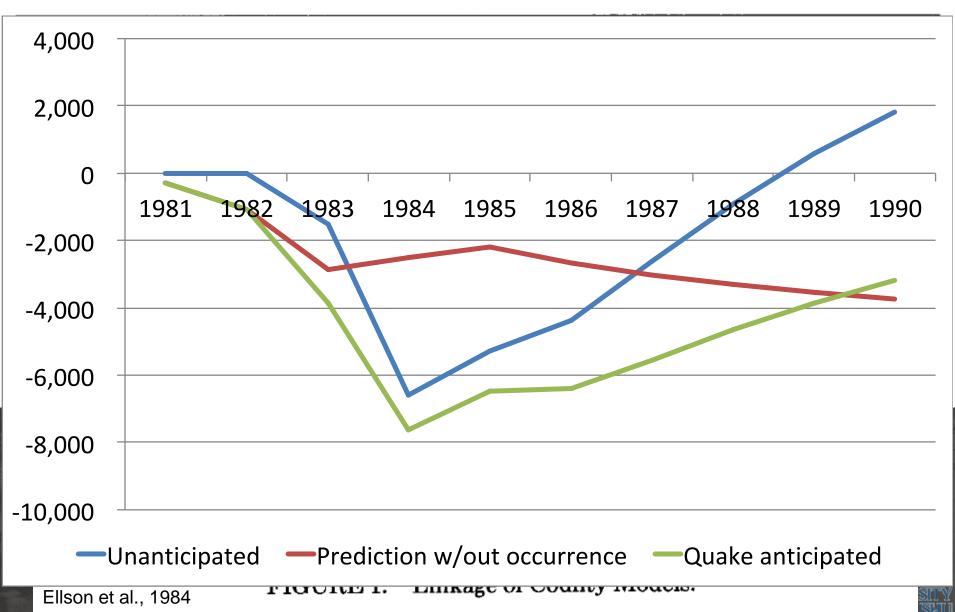
Significance of the earthquake on GRP (KOBE as dependent variable)

Statistically rigorous and stochastic estimation

Constant	0.030 (0.056)				
_		1.1112	c 1		

Forecasting capability for long-run impact

	<u> </u>			<u> </u>	-	
KOBE (t-1)	0.808*** (0.138)	0.852*** (0.110)	0.877*** (0.104)	0.919*** (0.083)	0.942*** (0.074)	
D94	(0.150)	(0.110)	-0.066**	(0.005)	-0.062***	
		a biata				


Based on historical trends

 Number of observations
 31
 31
 31
 31
 31

 Unable to distinguish between direct losses and higher-order (indirect) effects

ELLSON ET AL.: REGIONAL ECONOMIC EFFECTS OF EARTHQUAKES

TABLE 6: Simulation Results for Total Population-Charleston SMSA

563

Which Model to Use?

Purpose and timing: Pre-hazard (policy evaluation) detailed assessment needed extended IO or CGE models Post-hazard (budget determination) quick and aggregated long-run implications IO model, Econometric model

北九州市立大学。了WE UNIVESTY

Which Model to Use?

Particular aspect:

Transportation, lifelines, trades Detailed simulation of the aspect integrated IO models spatial CGE model **Demographic changes** Simulation of migration extended IO model spatial CGE model Econometric model

Final Remarks

- Models reflect only limited aspects of the reality.
- Models are assumption driven.
- Know the advantages and limitations of models.
- □ Interpret the results carefully.
- The more sophisticated models become, the more precise input data will be required. (West and Lenze, 1994)