RESEARCH FORUM ON ECONOMIC SYSTEMS MODELLING FOR DISASTER RISK ASSESSMENT

Irrigation investments, climate change and food security in the Philippines

A. Inocencio 26 February 2019

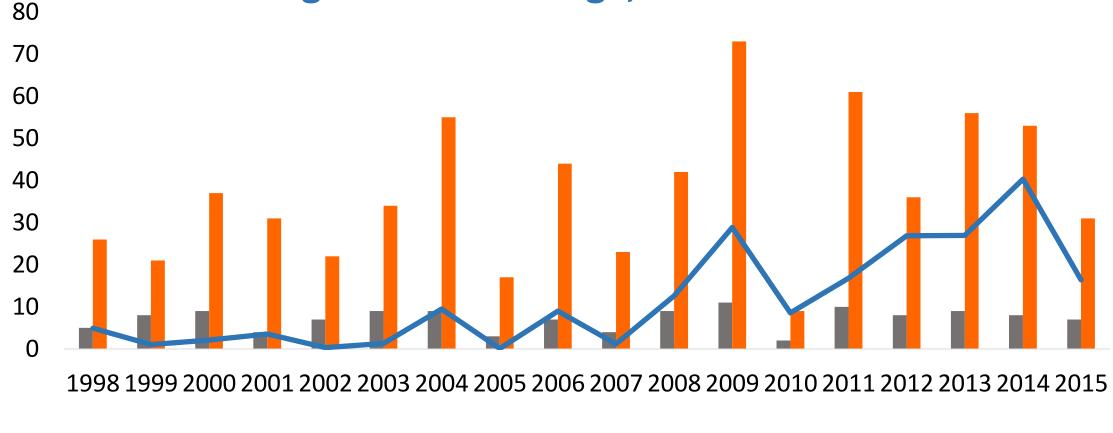
KEY MESSAGES

- 1) Country is experiencing effects of wide swings in weather esp. in recent years; we had super typhoons, more floods, and extended periods of drought recurring in most of the regions; **rice is worst hit; irrigation** infra is largely hit.
- 2) Second paper analyses three broad strategies in the agricultural water sector that can be used to address the challenge posed by climate change: (a) increasing the supply of water for irrigation through investment in infrastructure; (b) conserving water and improving the efficiency of water use in existing systems; and (c) improving crop productivity per unit of water and land through integrated water management and agricultural research and policy efforts.

 Results show that on all economic & food security outcomes, at lower irrigation cost estimate of Php175,000/ha, irrigation development has a higher positive impact vs. investment in varietal & seed dev't and farm level technology;

But at higher irrigation cost levels, varietal, & seed & farm level technologies can have higher rates of return, & it would be preferable to shift some investment to other development strategies

If the costs of new irrigation can be kept relatively low, faster irrigation development would make a major contribution to agricultural development & food security in the country


CLIMATE CHANGE IS REAL; RICE IS MOST AFFECTED; IRRIGATION INFRA LARGELY HIT

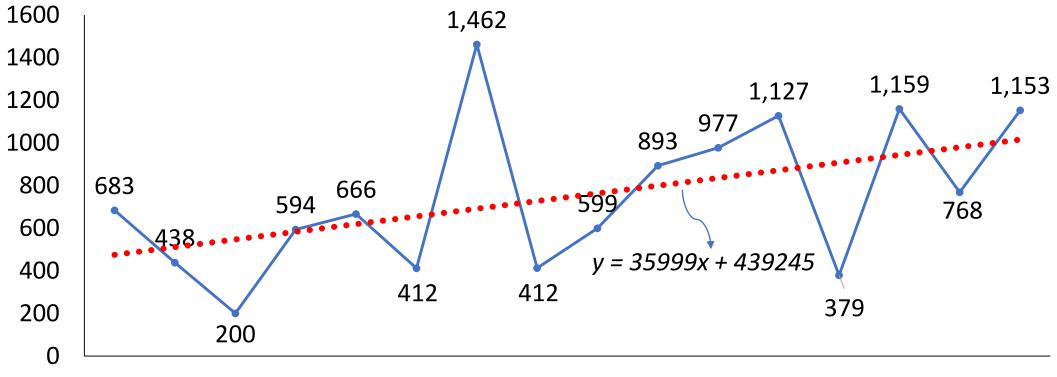
Philippine Cyclones* with Casualties and Agriculture Damages, 1998 -2015

Source: FPOPD DA for basic data Note: *Includes typhoons & storms

Year	No. of Cyclones	No. of Regions Affected	No. of Regions Affected (multiple response)	Agriculture Damage (Php B)
1998	5	11	26	4.903
1999	8	7	21	1.061
2000	9	13	37	2.120
2001	4	14	31	3.562
2002	7	13	22	0.340
2003	9	12	34	1.315
2004	9	11	55	9.466
2005	3	12	17	0.110
2006	7	12	44	8.998
2007	4	10	23	1.180
2008	9	14	42	12.642
2009	11	16	73	28.857
2010	2	6	9	8.557
2011	10	17	61	16.818
2012	8	16	36	26.888
2013	9	16	56	26.950
2014	8	15	53	40.317
2015	7	10	31	16.372
Total	129	225	671	210.457
Annual Average	7	13	37	12

Number of Tropical Cyclones, Regions Affected and Agriculture Damage, 1998-2015

No. of Tropical Cyclones / Typhoons


No. of Regions Affected*

- Agriculture Damage (Billions of Pesos)

Note: *Multiple counts: Some regions were hit several times in a year. Sources: Ponce, Inocencio (2017); NDRRMC, NDCC, PAG-ASA for basic data

Total Agriculture Area (ha) Affected by Natural Calamities*, 2000-2015

'000 ha.

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Sources: Ponce and Inocencio (2017); data from 2000 to 2010 - Israel & Briones (2012) ; data from 2011 to 2015 - FPOPD DA Note: *Consist of typhoons, droughts & floods

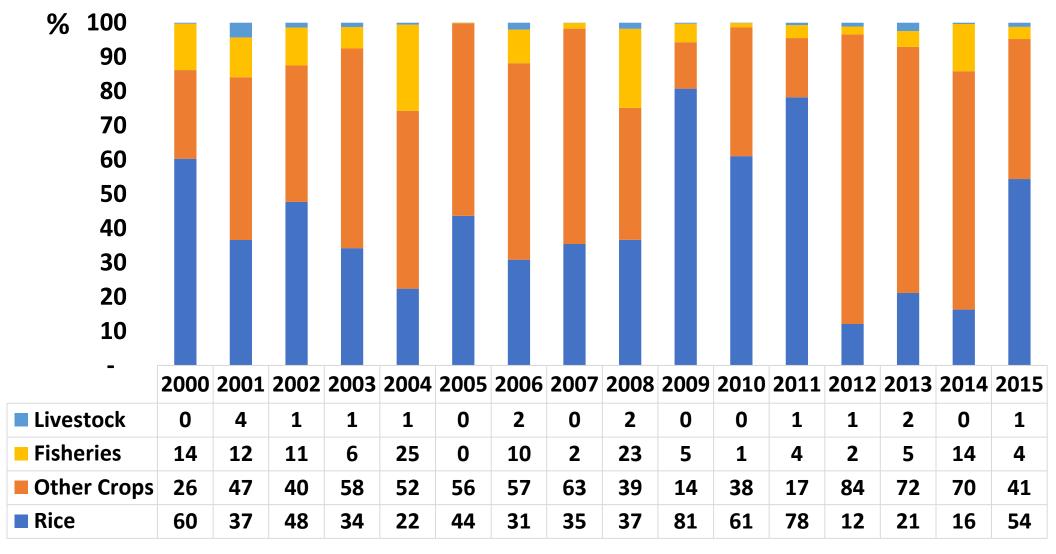
Estimated Impacts of Climate Change to Agriculture

Code	Climate Change Impact	Hectares	Percent of Country
1	Drought + Flooding + Landslide + SAFDZ	162,099	0.54
2	Drought + Landslide + SAFDZ	397,715	1.33
3	Flooding + Landslide + SAFDZ	151,605	0.51
4	Drought + Flooding + SAFDZ	2,597,894	8.66
5	Drought + SAFDZ	3,358,361	11.19
6	Flooding + SAFDZ	2,720,265	9.07
7	Landslide + SAFDZ	729,551	2.43
8	Drought + Flooding + Landslide	101,733	0.34
9	Drought + Landslide	703,825	2.35
10	Flooding + Landslide	155,947	0.52
11	Drought + Flooding	1,129,298	3.76
12	Dry Land Only	4,549,601	15.17
13	Flooding Only	1,560,165	5.2
14	Landslide Only	1,723,463	5.74
15	SAFDZ only (not affected)	4,248,134	14.16
	Total	24,289,655	80.97

Note: GIS analysis, E.C. Godilano, 2009, 2010

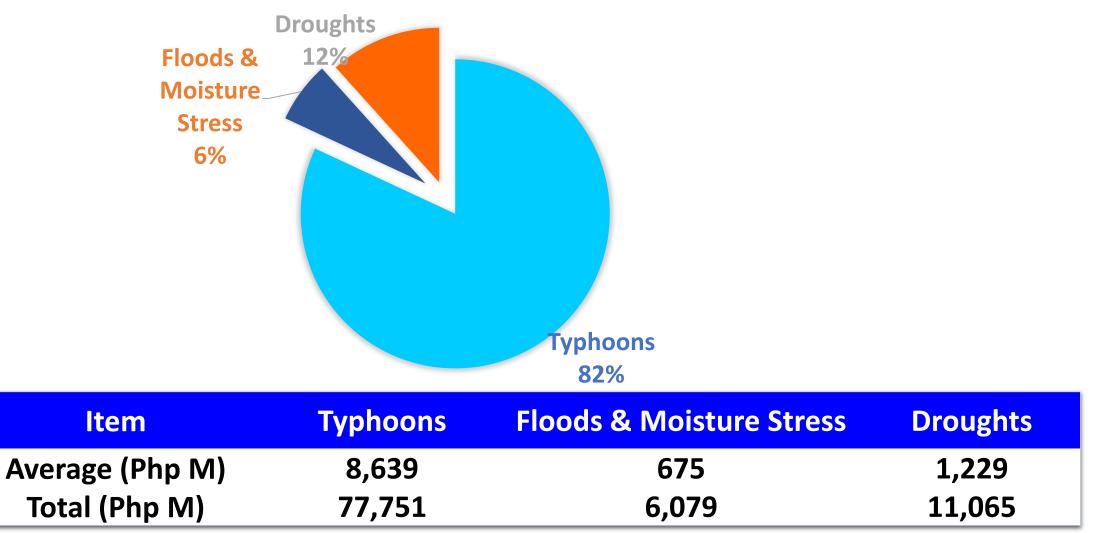
Source: Rudinas et. al (2013)

Total Value of Damage to Agriculture Commodities due to Natural Calamities*, 2000-2015 (Php M)

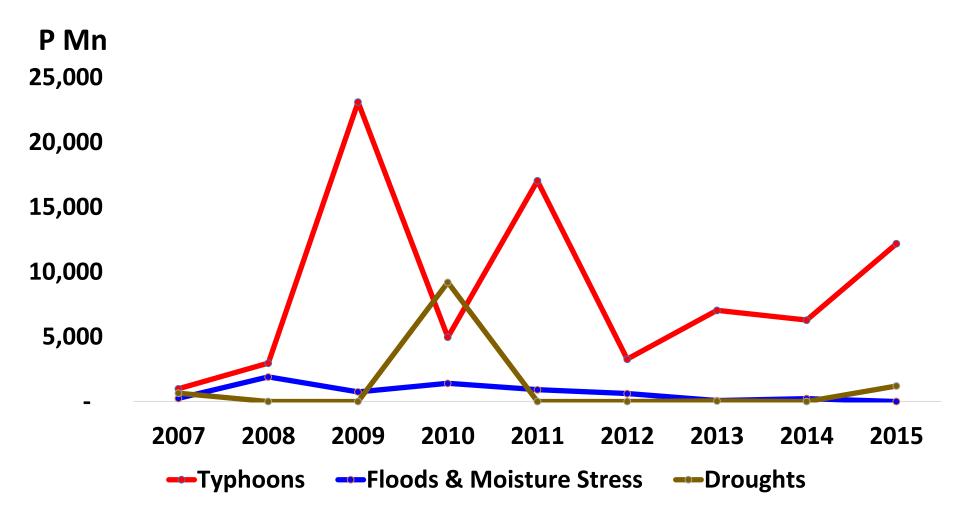

Year	Rice	Other Crops	Fisheries	Livestock	Total
2000	1,595	683	358	8	2,644
2001	805	1,045	255	95	2,200
2002	548	458	127	16	1,150
2003	1,320	2,246	242	49	3,857
2004	1,698	3,928	1,906	44	7,576
2005	1,942	2,498	6	0	4,447
2006	3,401	6,307	1,081	223	11,012
2007	1,882	3,337	89	3	5,311
2008	5,015	5,270	3,152	246	13,683
2009	23,842	3,991	1,597	88	29,519
2010	15,559	9,594	303	28	25,484
2011	17,842	3,937	859	165	22,804
2012	3,878	27,079	723	368	32,047
2013	7,139	24,197	1,552	828	33,716
2014	6,499	27,676	5,476	155	39,806
2015	13,367	10,046	868	300	24,581
Total	106,333	132,293	18,595	2,616	259,837
Average	6,646	8,268	1,162	164	16,240

Sources: Ponce, Inocencio (2017); data from 2000 to 2010 -Israel & Briones (2012) ; data from 2011 to 2015: FPOPD DA Note: *Consist of typhoons, droughts & floods

Annual Average Distribution of Damage to Agriculture Commodities due to Natural Calamities*, 2000-2015 **Fisheries Livestock Other Crops** 7% 1% 2% **Coconut** Rice 17% 41% **All Crops All Crops** less Rice **92%** 51% Banana 9% **HVC** Corn 9% 14% **Coconut Other Crops Fisheries Livestock** Item Rice HVC Banana Total Corn **Annual Average** 6,646 2,340 1,429 1,483 2,708 1,162 164 16,548 309 (P Mn) Total (P Mn) 106,333 37,441 22,865 23,724 43,325 4,938 18,595 2,616 264,775


Sources: Ponce and Inocencio (2017); Data from 2000 to 2010- Israel & Briones (2012); Data from 2011 to 2015- FPOPD DA Note: *Consist of typhoons, droughts & floods

Annual Distribution Agriculture Damage by Various Commodities due to Natural Calamities*, 2000-2015

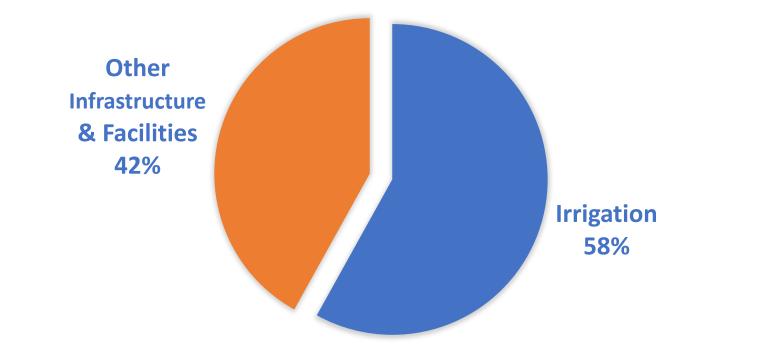

Sources: Ponce and Inocencio (2017); Data from 2000 to 2010: Israel & Briones (2012); Data from 2011 to 2015: FPOPD DA Note: *Consist of typhoons, droughts & floods

Sources of Damage to Rice Farming from Natural Calamities, 2007-2015

Sources: Ponce and Inocencio (2017); Data from 2000 to 2010: Israel & Briones (2012); Data from 2011 to 2015: FPOPD DA Note: *Consist of typhoons, droughts & floods

Trends in Damage to Rice Farming by Type of Event, 2007-2015 (Php M)

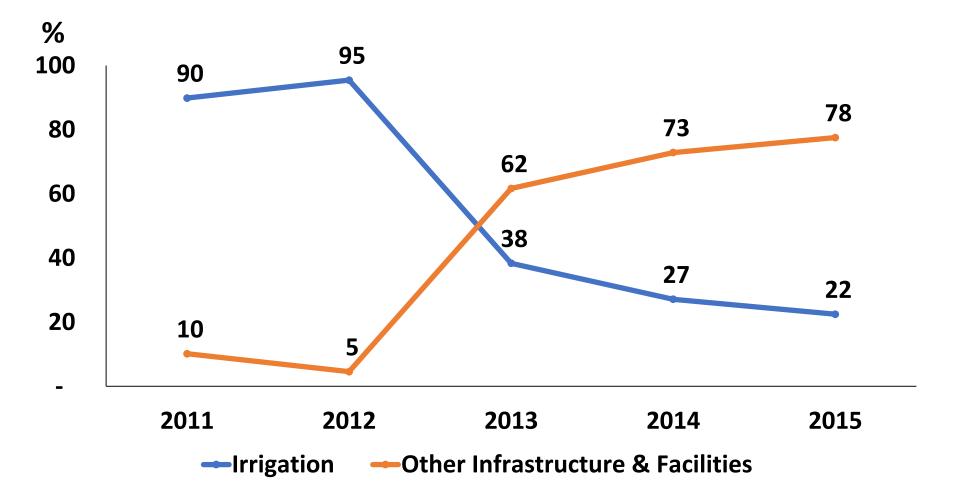
Sources: Data from 2000 to 2010: Israel & Briones (2012); Data from 2011 to 2015: FPOPD DA Note: *Consist of typhoons, droughts & floods


Regional Damages to Rice Production from Natural Calamities*, 2011-2015

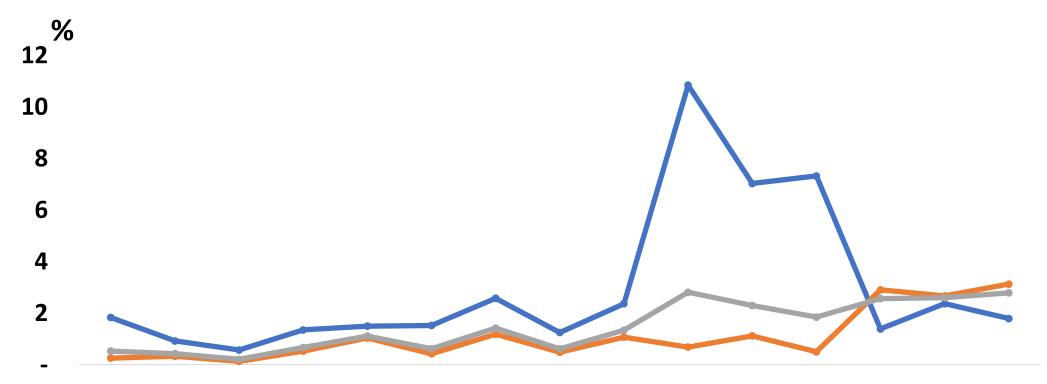
Region	Average Area Harvested ('000 ha.)	Area Affected ('000 ha.)	Total (Php M)	Annual Average (Php M)	% of Total Damage
CAR	118	69	994	199	2
Region I	406	268	2,971	594	6
Region II	581	531	5,932	1,186	12
Region III	684	1,053	23,931	4,786	49
Region IVA	114	32	889	178	2
Region IVB	280	117	2,233	447	5
Region V	334	273	5,706	1,141	12
Region VI	636	98	1,702	340	3
Region VII	105	3	156	31	0.32
Region VIII	281	150	1,437	287	3
Region IX	161	10	209	42	0.43
Region X	158	16	632	126	1
Region XI	102	41	366	73	1
Region XII	345	24	1,086	217	2
CARAGA	161	49	258	52	1
ARMM	208	10	223	45	0.46
Total	4,674	2,746	48,725	9,745	100

Source: FPOPD DA

Note: *Consist of typhoons, droughts & floods


Distribution of Damage to Agriculture Infrastructure & Facilities due to Natural Calamities, 2011 - 2015

Items Irrigation		Other Infrastructure & Facilities	Total	
Average (Php M)	1,261	911	2,172	
Total (Php M)	6,305	4,553	10,859	


Sources: Ponce and Inocencio (2017); FPOPD for basic data Note: *Consist of typhoons, droughts & floods

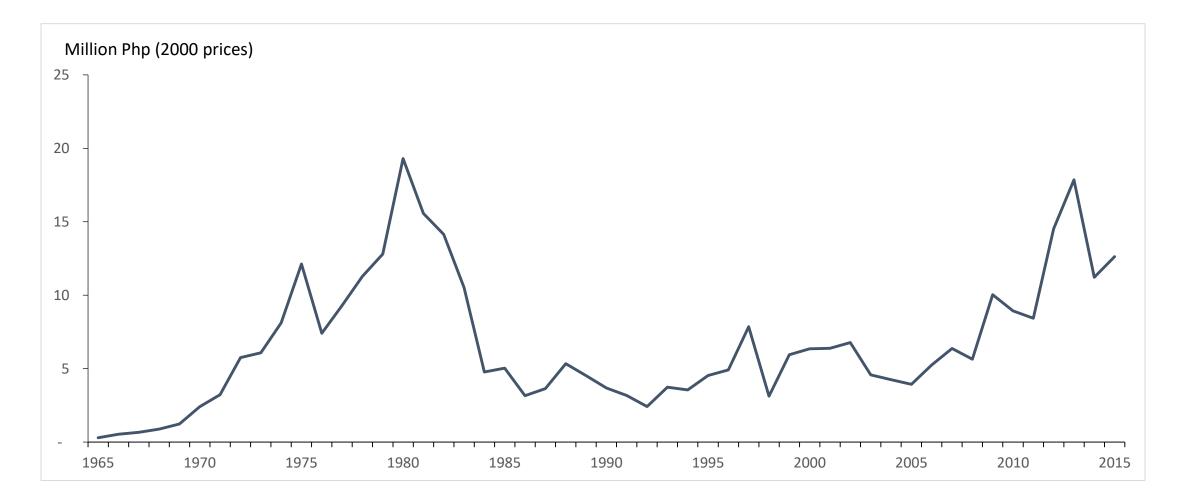
Trends in Damage Agriculture Infrastructure and Facilities due to Natural Calamities*, 2011-2015

Sources: Ponce & Inocencio (2017); FPOPD DA for basic data Note: *Consist of typhoons, droughts & floods

Trends in Natural Calamity Damages as % of Palay, Nonpalay Commodities & Total Agriculture GVA

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Damage to Rice as % of Palay GVA


Damage to Agri Commodities less Rice as % of Agri GVA less Rice

---- Total Damage to Agri Commodities as % of Agri GVA

Sources: Israel & Briones (2012) – data from 2000 to 2010; FPOPD DA – data from 2011 to 2015

WHERE TO INVEST THEN?

Trends in public investments in irrigation in real terms, 1965–2015

Source: Inocencio, Barker (2018)

Growth Rates of Irrigation Development, 1964–2015

Years	National Irrigation System	Communal Irrigation System	Private or OGA* Irrigation	Total	Annual Growth Rates	
		%				
1964 to 1980	218	126	52	396	5.7	
	472	310	152	934	5.7	
1980 to 2000					1.6	
	686	501	174	1,361	1.0	
2000 to 2015					1.7	
	755	616	361	1,731	1./	

The IMPACT Model (IFPRI)

- Economic simulations using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), a global partial equilibrium model of agriculture & food production system, developed by the International Food Policy Research Institute (IFPRI)
- IMPACT is widely used in analyses of food security, agricultural policies, irrigation investment and climate change adaptation strategies (Rosegrant, Cai and Cline, 2002; Robinson et al., 2015)

Four Alternative Irrigation Dev't Scenarios

1) 70% DEVELOPMENT & EFFICIENCY-BASED ALLOCATION SCENARIO

- Sets the irrigation devt target at 70% of the country's total irrigable area in 15 years to 2030
- Regionally allocated based on efficiency (increase in area and productivity)
- Additional 390,000 ha targeted for dev't all allocated to Luzon
- 2) 70% DEVELOPMENT & EQUITY-BASED ALLOCATION SCENARIO
 - Same irrigation development target of 70% in 15 years to 2030
 - But allocated based on equal 70% dev't of each region's irrigable area
 - 390,000 ha are allocated as: 132,000 ha (Luzon); 257,000 ha (Mindanao)

Four Alternative Irrigation Dev't Scenarios

- **3) 90%** DEVELOPMENT & EFFICIENCY-BASED ALLOCATION SCENARIO
 - Sets higher irrigation devt target of 90% of the country's total irrigable area in 15 years to 2030
 - Regionally allocated based on efficiency (increase in area & productivity)
 - Dev't target area of 1 million ha for the country allocated as: 659,000 ha (Luzon) ; 341,000 ha (Mindana0)
- 4) 90% DEVELOPMENT & EQUITY-BASED ALLOCATION SCENARIO
 - Same irrigation development target of 90% in 15 years to 2030
 - But allocated based on equal 90% dev't of each region's irrigable area
 - One million ha are allocated to each region as: 482,000 ha (Luzon), 59,000 ha (Visayas), & 445,000 ha (Mindanao)

Benefit-Cost Analysis of **Different Irrigation Investment Strategies** in the Philippines, Under Climate Change

Irrigation Development	Economic welfare (Benefits)			Cost	Benefit-Cost		
	Producer Surplus	Consumer Surplus	Economic Surplus	Area*	Cost per hectare**	Total Cost	Ratio (BCR)***
	net present value (Php million)			000 ha	Php	Php million	
			70% deve	elopment			
Efficiency-based							
allocation	288909	141376	291,917	390	164,500	64,155	4.55
Equity-based							
allocation	279133	134749	282,000	390	164,500	64,155	4.40
			90% deve	elopment			
Efficiency-based							
allocation	826354	419710	835,284	1000	164,500	164,500	5.08
Equity-based							
allocation	811126	410874	819,868	1000	164,500	164,500	4.98

Benefit-Cost Analysis of Different Irrigation Investment Strategies in the Philippines, With Alternative Costs Structure, Under Climate Change

Invication	Econom	ic welfare (Ben	efits)	Cost o	f Irrigation Dev	Ronofit Cost	
Irrigation Development	Producer Surplus	Consumer Surplus	Economic Surplus	Area*	Cost per hectare**	Total Cost	Benefit-Cost Ratio (BCR)***
	net prese	ent value (Php m	nillion)	000 ha	Php	Php million	
70% development							
Efficiency-based allocation	288,909	3,008	291,917	390	211,500	82,485	3.54
Equity-based allocation	279,133	2,867	282,000	390	211,500	82,485	3.42
90% development							
Efficiency-based allocation	826,354	8,930	835,284	1,000	258,500	258,500	3.23
Equity-based allocation	811,126	8,742	819,868	1,000	258,500	258,500	3.17

Table 18. Benefit-Cost Analysis (BCA) with HigherDevelopment Cost of Different Irrigation InvestmentStrategies in the Philippines, Under Climate Change

Irrigation Development	Economic welfare (Benefits)			Cost of I	Benefit-Cost Ratio		
	Producer Surplus	Consumer Surplus	Economic Surplus	Area*	Cost per hectare**	Total Cost	(BCR)***
	net present value (Php million)			000 ha	Php	Php million	
70% development							
Efficiency-based allocation	288,909	3,008	291,917	390	329,000	128,310	2.28
Equity-based allocation	279,133	2,867	282,000	390	329,000	128,310	2.20
90% development							
Efficiency-based allocation	826,354	8,930	835,284	1,000	399,500	399,500	2.09
Equity-based allocation	811,126	8,742	819,868	1,000	399,500	399,500	2.05

Table 19. Benefit-Cost Analysis (BCA) of Cereal TechnologyDevelopment in the Philippines, Under Climate Change

Technology Development		Economic welfare (Benefits)			Cost of Tech	Benefit-		
		Producer Surplus	Consumer Surplus	Economic Surplus	Area*	Cost per hectare* *	Total Cost	Cost Ratio (BCR)
		net present value (Php million)			000 ha	Php	Php million	
Varietal/Seed Technology	High	-8,413	20,633	12,220	7,007	313	2,191	5.59
	Low	1,645	752	2,350	7,007	313	2,191	1.08
Farm Management Technology	High	-8,977	20,069	11,092	7,007	313	2,191	5.06
	Low	-12,408	23,124	10,716	7,007	313	2,191	4.88

CONCLUSIONS

Modelling studies can provide the big picture in terms of overall impacts; hence can provide sound advice in formulating sectoral intervention

Irrigation investments are viable but need to consider policy environment/policies which can complement or strengthen its effects

References

Perez, N. Rosegrant, M. and **Inocencio, A.** (2018). Philippine Irrigation Investment under Climate Change: Scenarios, Economic Returns, and Impacts on Food Security. *DLSU Business & Economics Review*, (Special Issue on Agriculture Water in the Philippines). *Vol. 28., No. 1. pp.121-146*.

Ponce, E. and **Inocencio, A**. 2017. Toward a More Resilient and Competitive Philippine Rice Industry: Lesson from the Past Three Decades. Los Baños, Laguna: International Rice Research Institute. (December 2016 ppt).