Multi-Regional Inoperability Input-Output Modelling using Disaster-REALM

Krista Danielle Yu School of Economics De La Salle University

National IO Models vs. Regional IO Models

- National IO Model: Macro view of the entire economy, showing interindustry transactions on a national scale
- Regional IO Model:
 - Single Region Model: shows the intra-regional flow of transactions, treats all other regions as part of the rest of the world.
 - Inter Regional Input-Output Model (IRIO): Single Region Model with intraregional transaction flows; Data gathered through survey
 - Multi Regional Input-Output Model (MRIO): Single Region Model with intraregional transaction flows; Data gathered through non-survey methods or hybrid methods; an estimation of IRIO.

Why Regionalize?

- Technology of production of each region is specific
 - It may be very close or very different from the national table.
- □ To account for cross-regional interdependencies.
 - Demand footprint purchasing goods and services from other regions
 - Supply footprint supplier of goods and services for other regions
- □ Policymakers can mitigate risks against:
 - Disaster scenarios that produce supply perturbations in their demand footprint
 - Disaster scenarios that produce demand perturbations in their supply footprint

Single Regional IO Model Schematic

Multiregional IO Schematic

Examples of MRIOs

- Global Models
 - World Input-Output Database (WIOD) –environment and socio-economic indicators
 - Global Trade Analysis Project (GTAP) focuses on trade
 - OECD focuses on TiVA more specifically on manufacturing sectors
 - Asian International IO Table (IDE-JETRO) concentrates on Asian economies with 70 sectors
 - EORA extensive environmental indicators including 187 countries
 - ADB MRIO- includes 45 economies and 35 sector breakdown
- Country Level
 - Japan
 - China
 - Australia
 - US

Constructing the MRIO

From	\ T0	Luzon			Visayas			Mindanao			Fina	ıl	
FIOIII	\ 10	AGR	IND	SRV	AGR	IND	SRV	AGR	IND	SRV	Dema	ınd	Total Output
<u> </u>	S 1												
Luzon	S2		Z_{11}			Z_{12}			Z_{13}		f_1		\mathbf{x}_1
	\$3												
Visayas	S 1												
sa,	S2		Z_{21}			Z_{22}			Z_{23}		f_2		x_2
<u> </u>	\$3												
ODU	S 1				Z ₃₂			Z ₃₃		f ₃	x ₃		
inda	Windana S2		Z ₃₁										
٤	\$3												
Value Added		V 1		v_2		V ₃							
Total Input		χ _ι ^τ		$\mathbf{x_2}^\intercal$		x_3^\intercal							

Taal Eruption

- □ Started on January 12, 2020
- Several towns on lockdown
 - Households evacuated
 - Workforce inoperability
- Businesses hotels,
 restaurants, farms etc..
 shutdown due to ashfall and
 impending explosive eruption
- Schools converted to evacuation centers

Source: ABS-CBN News

Simulation Considerations

- 5-Region MRIO Table
 - NCR
 - Region 4A
 - Rest of Luzon
 - Visayas
 - Mindango
- 14 Sectors
 - Agriculture, Fishery and Forestry
 - Mining and Quarrying
 - Manufacturing
 - Construction
 - Electricity, Gas and Water
 - Land Transportation
 - Water Transportation
 - Air Transportation
 - Communication
 - Trade
 - Finance
 - Real Estate and Ownership of Dwelling Places
 - Private Services
 - Government Services

Perturbation Estimates

- Based on NDRRMC's situation reports:
 - Damages to Agriculture and Livestock
 - Power Outages
 - Towns affected
- System perturbations introduced
 - Agriculture, Fishery and Forestry 5%
 - Electricity, Gas and Water 5%
 - Real Estate and Ownership of Dwelling Places 1%
 - Private Services 1%

Inoperability levels

Multi-Regional Inoperability Input-Output Modelling using Disaster-Realm

Economic Losses

	NCR	R4A	ROL	VIS	MIN	
AGR	56,259.57	21,217,561.90	204,072.80	63,956.00	81,533.57	
MIN	5,496.91	864,342.17	18,282.79	6,982.92	7,627.91	
MAN	101,968.43	6,628,098.48	284,282.47	108,729.71	119,074.20	
CONS	7,184.37	67,382.26	22,477.33	7,201.73	7,606.20	
EGW	8,023.30	8,303,496.19	23,587.07	8,793.49	8,954.54	
LAND	39,016.40	114,307.80	101,494.40	33,795.32	37,036.60	
WATER	8,944.66	36,311.38	22,508.43	8,188.74	8,846.07	
AIR	9,452.72	30,842.76	24,508.74	8,649.21	8,924.96	
СОММ	16,440.26	191,492.02	50,407.03	16,924.77	17,776.16	
TRADE	58,876.81	638,110.57	189,859.64	66,461.33	71,866.13	
FIN	39,477.25	273,235.39	119,868.51	40,106.65	43,767.20	
REAL	12,590.08	2,373,248.27	31,855.33	11,399.59	10,683.67	
PRIV	95,696.28	2,421,086.58	297,978.30	99,002.68	104,875.81	
GOV	-	-	-	-	-	

<u>Total 459,427.03 43,159,515.77 1,391,182.84 480,192.13 528,573.01</u> In thousand PhP

Multi-Regional Inoperability Input-Output Modelling using Disaster-Realm

Disaster-REALM Freeware

Disaster-REALM Freeware

IIM Tool

DIIM Tool

DIIM Tool

DIIM Tool

•

Inoperability in thousand PhP: 7 25,970,697.91

Realm

Print

Industrial

Services

Economic loss in thousand PhP: ₱ 25,970,697.91

7 5,433,923.01

P 1,928,797.42

2

3

Print

mindanao

mindanao

Conclusion and Future Recommendations

- This study has developed 3 tools available through a web-based freeware founded on sound economic models
 - IIM Tool for static analysis
 - DIIM Tool for dynamic analysis
 - MRIIM Tool for multiregional analysis
- This platform uses technology to give information to policy makers backed with science-based estimates.
- ☐ This study is able to show that while national level input-output analysis can provide good estimates, it is better to have regional level tables in order to see the interactions between sectors within regions and across regions.
- The Taal Volcano Eruption's economic impact is not limited to its nearby regions, but extends to the rest of the country.
- ☐ There is a need to develop MRIIM models with higher resolution in order to derive more region-specific results.

Acknowledgements

- The authors would like to thank the following for supporting our research
 - National Academy of Science and Technology
 - The OML Center

Thank you for your attention.

Questions?

krista.yu@dlsu.edu.ph

For more information on IIM in the Philippines

www.disaster-realm.net

