An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster Risk Management

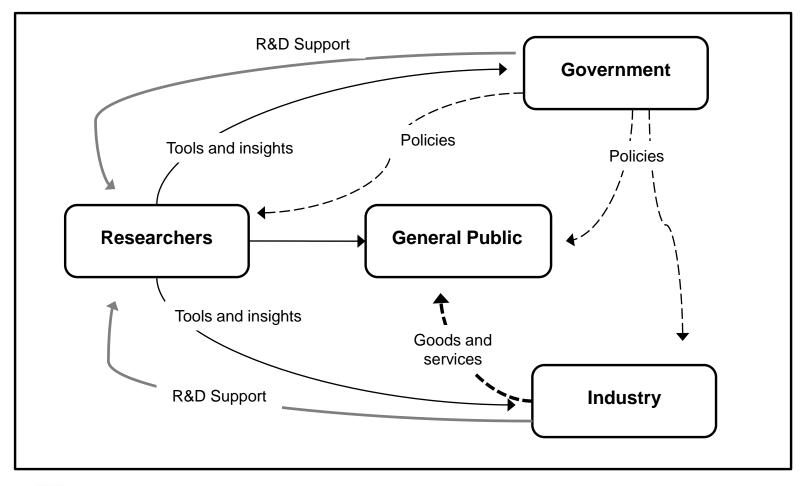
Diamond Hotel, Manila January 20, 2017



Raymond Tan, PhD.

Vice Chancellor of Research and Innovation Professor of Chemical Engineering University Fellow De La Salle University, Manila

Disaster Vulnerability and Poverty



- The Philippines is one of the most disaster-prone countries in the world
- Research that contributes to weakening the vicious cycle of disaster vulnerability and poverty is essential
- The proposed project will develop a scientific basis for disaster
 risk management policy in the country

http://commons.wikimedia.org

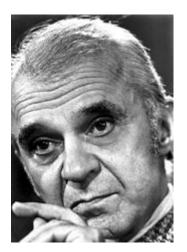
The Role of IIM Research in a Disaster-Prone Country

An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster Risk Management

4

Fast- and Slow-Onset Disasters

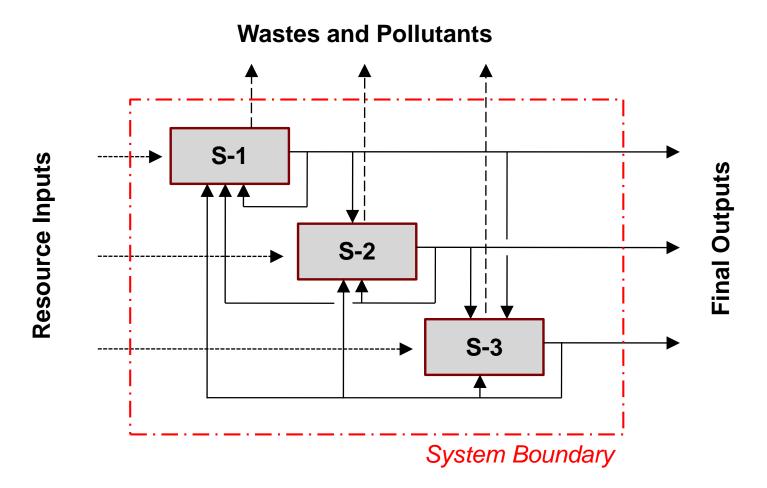
Speed of Occurrence	Some Examples
Fast-Onset	 Typhoons and hurricanes Earthquakes Volcanic eruptions Landslides Tsunamis Disease outbreaks Industrial accidents Terrorist attacks
Slow-Onset	 Climate change Desertification Biodiversity loss Migration-induced "brain drain" Depletion of non-renewable resources



Example of "Ripple Effects" from Possible Disasters that Threaten the Philippines

Triggering Event	Examples of Collateral Damage
Tsunami hits a major tourist spot	Job losses due to hotel closuresSmall businesses go bankrupt
Massive flu outbreak hits major cities	 Labor shortage across multiple sectors Loss of industrial output across multiple sectors
Ash from volcanic eruption cripples an international airport	Manufacturing plant closuresTourism losses
Prolonged drought due to climate change	 Crop failure Shutdown of hydroelectric facilities Loss of industrial output Reduced investment Loss of livelihood

Input-Output Analysis: Historical Perspective



Wassily Leontief received the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1973

"for the development of the input-output method and for its application to important economic problems"

A Three-Sector Input-Output System

Inoperability Input-Output Analysis

- Haimes and Jiang (2001) defined inoperability as "the inability of the system to perform its intended function."
- Various interpretations of the concept have been proposed:
 Probability-weighted degree of failure (Haimes and Jiang, 2001)
 - ≻ Loss of physical output or functionality (Haimes et al., 2005)
 - Drop in economic output or demand (Santos and Haimes, 2004; Haimes et al., 2005)

Important IIM articles Haimes and Jiang (2001) and Santos and Haimes (2004)

LEONTIEF-BASED MODEL OF RISK IN COMPLEX INTERCONNECTED INFRASTRUCTURES

By Yacov Y. Haimes¹ and Pu Jiang²

ABSTRACT: Wassily Leontief received the 1973 Nobel Price in Econor known as the Leontief input-output model of the economy. Leontief's m connectedness among the various sectors of an economy and forecasting in another. A Leontief-based infrastructure input-output model is develop intraconnectedness within each critical infrastructure as well as the interc input/output model is then generalized into a generic risk model with the f A preliminary study of the dynamics of risk of inoperability is discussed, u Several examples are presented to illustrate the theory and its application

BACKGROUND

The advancement in information technology has markedly increased the interconnectedness and interdependencies of our critical infrastructures, such as telecommunications, electrical power systems, gas and oil storage and transportation, banking and finance, transportation, water-supply systems, emergency services, and continuity of government. There is an urgent emerging need to better understand and advance the art and science of modeling complexity and of interconnected largescale complex systems; this need stems from the increasing vulnerability of our critical infrastructures.

President Clinton's Executive Order 13010, issued on July 15, 1996, established the President's Commission on Critical Infrastructure Protection (PCCIP) in order to develop a national strategy for protecting these infrastructures from various for generation the quality an systems inter quantity of su tity of surface of point and 1 ents. In addit closely depen of the watersh hurricanes, cl own critical i and ground which enable flow without impacts on th and leaky in

Risk Analysis, Vol. 24, No. 6, 2004

Modeling the Demand Reduction Input-Output (I-O) Inoperability Due to Terrorism of Interconnected Infrastructures¹

Joost R. Santos^{2*} and Yacov Y. Haimes²

Interdependency analysis in the context of this article is a process of assessing and managing risks inherent in a system of interconnected entities (e.g., infrastructures or industry sectors). Invoking the principles of input-output (I-O) and decomposition analysis, the article offers a framework for describing how terrorism-induced perturbations can propagate due to interconnectedness. Data published by the Bureau of Economic Analysis Division of the U.S. Department of Commerce is utilized to present applications to serve as test beds for the proposed framework. Specifically, a case study estimating the economic impact of airline demand perturbations to national-level U.S. sectors is made possible using I-O matrices. A ranking of the affected sectors according to their vulnerability to perturbations originating from a primary sector (e.g., air transportation) can serve as important input to risk management. For example,

11

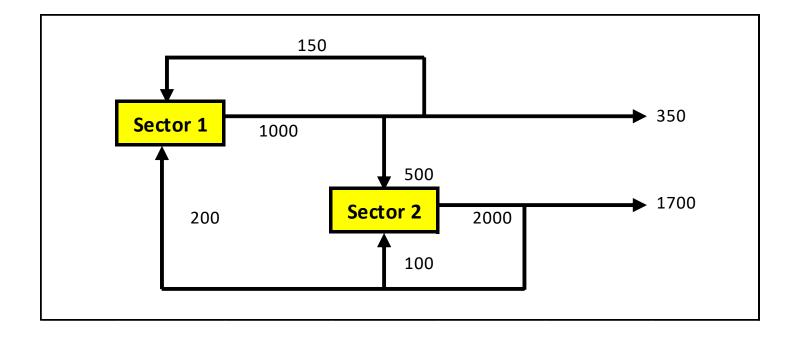
Overview of Basic IIM (Haimes and Jiang, 2001)

$$q = A^*q + c$$

 $q = (I - A^*)^{-1} c$
 $q = (I + A^* + A^{*2} + A^{*3}...) c$

where:

- **A*** = interdependency matrix
- **c** = initial inoperability vector
- I = identity matrix
- **r** = risk management resource vector
- **q** = final inoperability vector



IIM Project Components

Project Component	Methodology
Research	Development of mathematical framework for MOLP-IIM model
Development	 Data mining and FGD to calibrate numerical coefficients of working model Coding and preliminary testing of software prototype Drafting of user documentation
Dissemination	 Release of initial version of MOLP-IIM model Conduct of IIM training workshops for various government agencies Compilation of user feedback for program updates

Baseline Transactions of a Two-Sector Economy (Miller and Blair, 2009)

An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster Risk Management

13

14

Baseline Transactions of a Two-Sector Economy

	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	150	500	350	1000
Sector 2	200	100	1700	2000

Baseline Transactions of a Two-Sector Economy

	Sector 1	Sector 2	Final Demand (y)	Total Output
			(y)	(A)
Sector 1	150	500	350	1000
Sector 2	200	100	1700	2000
		15	ctor 1 needs 0 units from Sect d 200 units from	

15

16

Baseline Transactions of a Two-Sector Economy

	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	150	500	350	1000
Sector 2	208	100	1700	2000
		150 units are 500 units are	uces 1000 units used by Sector 1 used by Sector 2 sold as final pro	2

The Input – Output Model

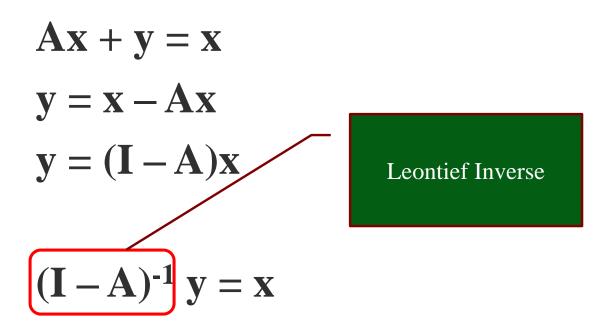
	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	150/1000	500/2000	350	1000
Sector 2	200/1000	100/2000	1700	2000

17

	Sector 1	Sector 2
Sector 1	0.15	0.25
Sector 2	0.20	0.05

The Input – Output Model

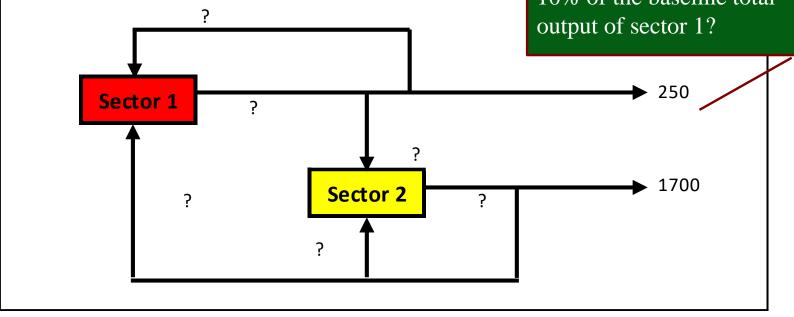
	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	0.15	0.25	350	1000
Sector 2	0.20	0.05	1700	2000


Technical Coefficient Matrix

A

19

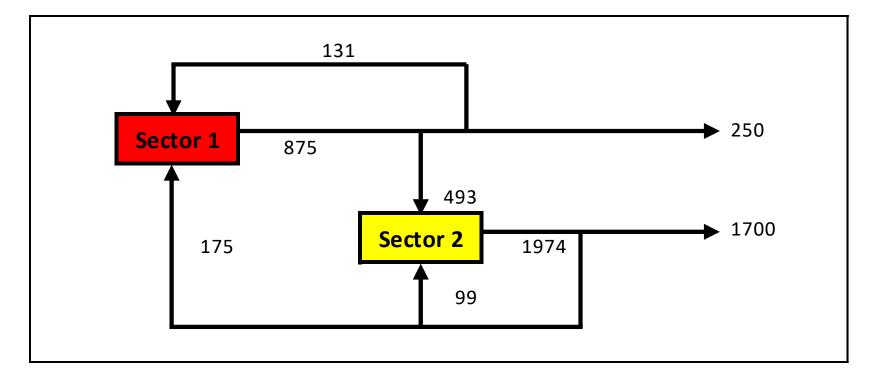
The Input – Output Model



Transactions for PerturbedTwo-Sector EconomyWhat happen
demand for Sector Sector

What happens if the final demand for Sector 1 decreases by an amount equivalent to 10% of the baseline total output of sector 1?

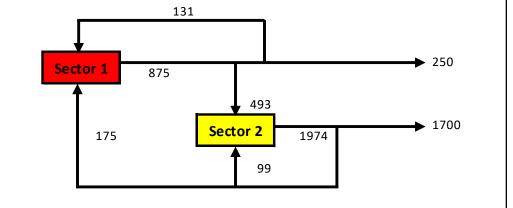
20


Transactions for Perturbed Two – Sector Economy

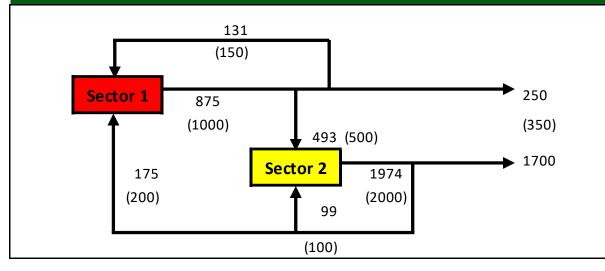
	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	0.15	0.25	250	?
Sector 2	0.20	0.05	1700	?
$A = \begin{bmatrix} 0.15 & 0.5 \\ 0.20 & 0.6 \end{bmatrix}$	$\begin{bmatrix} 25\\05 \end{bmatrix}$ ($\left[I-A\right)^{-1} = \begin{bmatrix} 1.2\\0.2 \end{bmatrix}$	25 0.33 26 1.12	

$$(I-A) = \begin{bmatrix} 0.85 & -0.25 \\ -0.20 & 0.95 \end{bmatrix} \quad (I-A)^{-1} y = \begin{bmatrix} 1.25(250) + 0.33(1700) \\ 0.26(250) + 1.12(1700) \end{bmatrix} = \begin{bmatrix} 875 \\ 1974 \end{bmatrix}$$

Transactions for Perturbed Two – Sector Economy



An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster Risk Management


22

Transactions for Perturbed Two – Sector23Economy

	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	131	493	250	875
Sector 2	175	99	1700	1974

	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	1.9%	0.7%	10%	12.5%
Sector 2	1.25%	0.05%	0%	1.3%

Reduction in the transactions of the Perturbed Two – Sector Economy

An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster **24** <u>Risk Management</u>

Trader's Hotel, Manila September 25, 2013

25

Inoperability Input – Output Model (IIM)

- Utilized for conducting interdependency analysis
- **Inoperability** refers to the level of a system's dysfunction expressed as a percentage of its "as-planned" capacity (Santos and Haimes, 2004; Haimes and Jiang, 2001)
- **Perturbation** refers to a change in the final demand in relation to the "as-planned" final demand
- **Interdependency** refers to the inoperability contribution of one sector to another

Inoperability Input – Output Model (IIM)

 $q = A^*q + c^*$ $c^* = q \cdot A^*q$ $c^* = (I - A^*)q$ $(I - A^*)^{-1}c^* = q$ Where qthe inoperability vector A^* the interdependency matrix c^* demand side perturbation vector

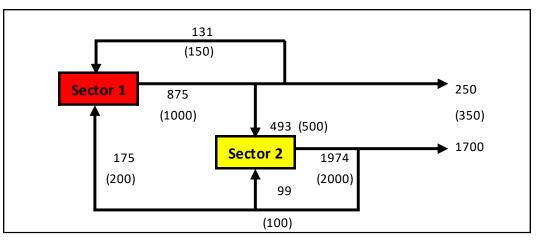
Inoperability Input – Output Model (IIM) INPUT – OUTPUT MODEL

- $q = A^*q + c^*$ $c^* = q - A^*q$ $c^* = (I - A^*)q$ $(I - A^*)^{-1} c^* = q$
- Ax + y = x y = x - Ax y = (I - A)x $(I - A)^{-1} y = x$

q the inoperability vector
A* the interdependency matrix
c* demand side perturbation vector

An Introduction to Inoperability Input-Output Modeling (IIM) as a Tool for Disaster Risk Management

Where

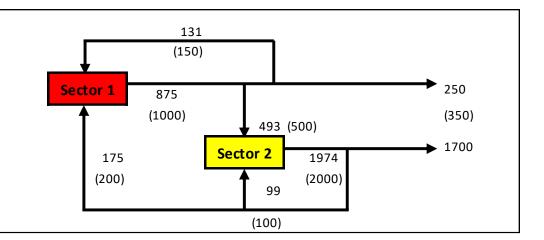

Demand Perturbation

ĉ

 \widetilde{c}

 \hat{x}

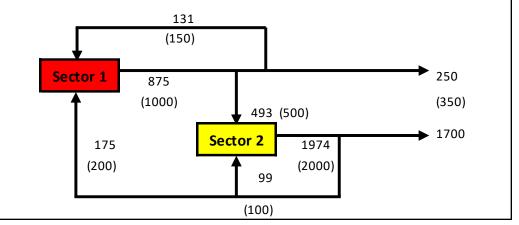
$$\mathbf{c^*} = \frac{\left(\hat{c} - \widetilde{c}\right)}{\hat{x}}$$


Where

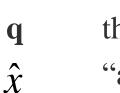
- "as planned" final demand
- reduced level of final demand
- "as-planned" total production

Demand Perturbation

$$c^* = \frac{\left(\hat{c} - \tilde{c}\right)}{\hat{x}}$$

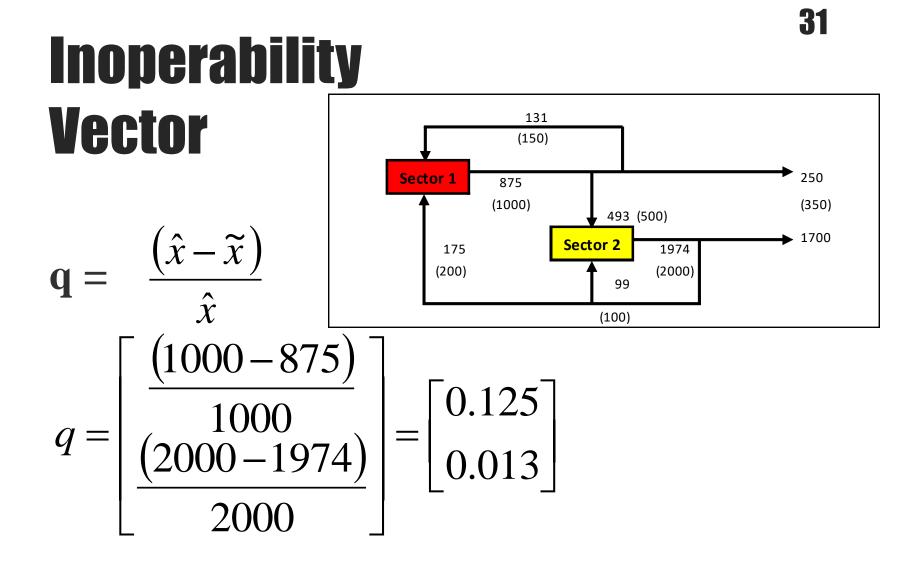


$$c^* = \begin{bmatrix} \frac{(350 - 250)}{1000} \\ \frac{(1700 - 1700)}{2000} \end{bmatrix} = \begin{bmatrix} 0.10 \\ 0 \end{bmatrix}$$



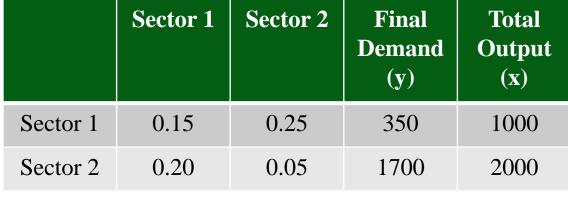
Inoperability Vector

$$\mathbf{q} = \frac{\left(\hat{x} - \widetilde{x}\right)}{\hat{x}}$$


Where

 \widetilde{x}

- the inoperability vector
- "as planned" total output
- reduced level of production



KANUL P

Interdependency Matrix Sec

 $\mathbf{a_{ij}}$ \hat{x}_i \hat{x}_j

 $\mathbf{A^*} = \frac{a_{ij}\hat{x}_j}{\hat{x}_i}$

Where

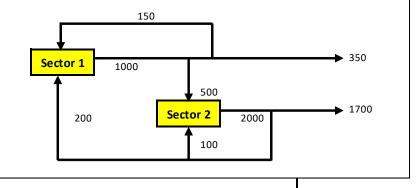
technical coefficient of matrix A"as-planned" total output of sector i"as-planned" total output of sector j

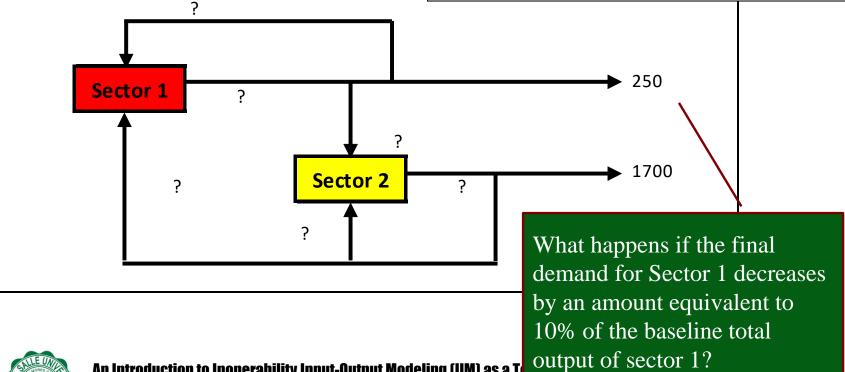
Interdependency Matrix (A*)

	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	0.15	0.25	350	1000
Sector 2	0.20	0.05	1700	2000

	Sector 1	Sector 2
Sector 1	<u>0.15(1000)</u> 1000	<u>0.25(2000)</u> 1000
Sector 2	<u>0.20(1000)</u> 2000	<u>0.05(2000)</u> 2000

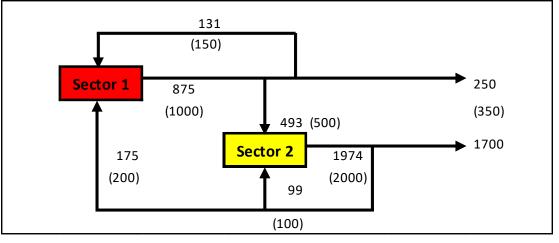
Interdependency Matrix (A*)


	Sector 1	Sector 2	Final Demand (y)	Total Output (x)
Sector 1	0.15	0.25	350	1000
Sector 2	0.20	0.05	1700	2000


	Sector 1	Sector 2
Sector 1	0.15	0.50
Sector 2	0.10	0.05

35

Transactions for Perturbed Two-Sector Economy


An Introduction to Inoperability Input-Output Modeling (IIM) as a T

IIM Case Study

	Sector 1	Sector 2	Demand Perturbation (c*)	Inoperabilty Vector (q)	
Sector 1	0.15	0.50	0.10	?	
Sector 2	0.10	0.05	0	?	
$A^* = \begin{bmatrix} 0.15 & 0.\\ 0.10 & 0. \end{bmatrix}$.50 .05	$(I-A)^{-1} = \begin{bmatrix} 1\\0 \end{bmatrix}$.25 0.66 .13 1.12		
$(I - A^*) = \begin{bmatrix} 0.3\\ -0 \end{bmatrix}$	$\begin{bmatrix} 85 & -0.50 \\ .10 & 0.95 \end{bmatrix}$	$(I-A)^{-1}c^* =$	1.25(0.10) + 0.13(0.10) + 0.00)	$\begin{bmatrix} 0.66(0) \\ 1.12(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.125 .013

IIM Case Study

	Sector 1	Sector 2	Demand Perturbation (c*)	Inoperability Vector (q)
Sector 1	0.15	0.50	0.10	0.125
Sector 2	0.10	0.05	0	0.013

38

Conclusion

• Connectivity within an economic system means that the total damage done in the aftermath of a disaster is much larger than the initial direct damage

Acknowledgments

• This has been funded by the Oscar M. Lopez Center for Climate Change Adaptation and Disaster Risk Mitigation

40

Thank you! Questions and Comments are Welcome

